$BF|K\7W;;5!E}7W3X2q(B $BAON)#1#0<~G/5-G0Bg2q(B

$BBh#1F|!!#57n#1#5F|!J?eMKF|!K(B

$B%A%e!<%H%j%"%k(B
$B!!%$%s%?!<%M%C%H(BWWW$B%[!<%`%Z!<%8$N:n$jJ}!J>.C.>&2JBg3X!!Fn90@,!K(B

$BBh#2F|!!#57n#1#6F|!JLZMKF|!K(B

$B3+2q@k8@(B$B!!@5K!CO9'M:!J9-EgBg3X!K(B

$B%;%C%7%g%s#1(B$B!!:BD9!!:4F#5A<#!JKL3$F;Bg3X!K(B

$B%;%C%7%g%s#2(B$B!!:BD9!!1J0fIp>
  • $BGO>l9/M:!"EZ20N4M5!JE}7W?tM}8&5f=j!K!"CfB<9%9(!JAm9g8&5fBg3X1!Bg3X!K!";3:j?-I'!J8|@8>JE}7W>pJsIt!K(B
    $B!!%V!<%H%9%H%i%C%WK!$K$h$kI8=`8m:9?dDj$N;n$_(B
  • $B@6?e?.IW!"?eED@590!":4F#5A<#!JKL3$F;Bg3X!K(B
    $B!!BP>N$J#1JQNLJ,I[$K$*$1$kHsBP>N$J#3(B-principal points$B$K$D$$$F(B
  • $BF;2HZu9,!J6e=#El3$Bg3X!K(B
    $B!!#2=hCV4V$NM%NtHf3S$G$N72C`h8!Dj$K$D$$$F(B $BFCJL9V1i-6(B$B!!:BD9!!@5K!CO9'M:!J9-EgBg;z!K(B
    $B!!@>OBI'!J3t<02q$B!!!!%$%s%?!<%M%C%H$G $B%;%C%7%g%s#3(B$B!!:BD9!!5{0fE0!J;3G7Fb@=Lt3t<02q
  • $B>eEDB@0lO:!J;0I)EE5!ElIt%3%s%T%e!<%?%7%9%F%`3t<02q $B!!2q$BBgB<#CK!JC^GHBg3X!KJ!;cItLg$NCOJ}8xL30w<{MW$K4X$9$kMW0xJ,@O!!;3K\D>5*!"Bg@><#CK!JC^GHBg3X!K(B
    $B!!COJ}8xL30w$NE,@-5,LO$K4X$9$k8&5f!AMh$?$k$Y$-COJ}J,8"$K8~$1$F!A(B $BAm2q(B

    $BBh#3F|!!#57n#1#7F|!J6bMKF|!K(B $B%;%C%7%g%s#4(B$B!!:BD9!!?b?e6&G7!J2,;3Bg3X!K(B

    • $B2O9gE}2p!"COB<$f$j!"8eF#>;;J!JBg:eBg3X!K(B
      $B!!#2JQNL%Y%-@55,J,I[$H$=$N1~MQ(B
    • $B;32<=S7C!"?y;39b0l!JCf1{Bg3X!K(B
      $B!!(BAsymptotic distribution and numerical comparison of discriminant function on estimative method and test procedure in discriminant analysis
    • $BDMED??0l!"?y;39b0l!JCf1{Bg3X(B)
      $B!!(BExact distributions and numerical computations of test statistics for the equality of latent vector in bivariate nomal distribution
    • $B;a2H>!L&!"HSDM@?Li!JEl3$Bg3X!K!"LnCfIRM:(B
      $B!!(BScheffe$B$N0lBPHf3SK!$NJQ7A(B
    • $B0BF#@50l!J;3G7Fb@=Lt3t<02q $B!!0lHL2=?dDjJ}Dx<0K!$K$*$1$kAj4X9=B$$NA*Br(B
    $BFCJL9V1i-7(B$B!!:BD9!!EDCfK-!J2,;3Bg3X!K(B
    $B!!(BFitting Generalized Risk Regression Models
    $B!!!!(BDale Preston$B!JJ| $BFCJL9V1i-8(B$B!!:BD9!!>.@>DgB'!J6e=#Bg3X!K(B
    $B!!7W;;5!=8Ls7?$N;~7ONs2r@OK!(B
    $B!!!!KL@n8;;MO:!JE}7W?tM}8&5f=j(B $B%;%C%7%g%s#5(B$B!!:BD9!!8eF#>;;J!JBg:eBg3X!K(B
    • $BEOC+??8c!JARI_7]=Q2J3XBg3X!K!"EDCfK-!J2,;3Bg3X!K(B
      $B!!:G>.#2>hK!0x;RJ,@O$N46EYJ,@O!'6&J,;69=B$J,@O$H$7$F$N%"%W%m!<%A!!(B
    • $B;3K\5AO:!"?b?e6&G7!J2,;3Bg3X!K(B
      $B!!%7%=!<%i%9$rMQ$$$?%G!<%?$N30$lCM$N8!=P(B
    • $B9b66=(E5!"3yARL-@.!JCf1{Bg3X!K(B
      $B!!?b?e6&G7!J2,;3Bg3X!K(B120$B2hA|%G!<%?$K4p$E$/6J@~$ND9$5$N?dDj(B
    $B%;%C%7%g%s#6(B$B!!:BD9!!F;2HZu9,!J6e=#El3$Bg3X!K(B
    • $BN)O2G&!J@;%^%j%"%s%J0e2JBg3X!K!";04V20=c0l!J@E2,8)N)$3$I$bIB1!!K!"7,86M}7C!";3ED7sM:!"Lp8eD9=c!J@;%^%j%"%s%J0e2JBg3X!K(B
      $B!!5?;wMp?t$rMQ$$$?(BKaplan-Meier$BK!$N$/$jJV$7$K$*$1$k8m:9$NI}(B
    • $BIZED@?!"EZ0f@?!JEl3$Bg3X!K(B
      $B!!JQF0$9$kH=Dj;~4V$r;}$DM%NtH=Dj$K$D$$$F(B
    • $B;^B $B!!6I=jE*FC0[@-$r$b$D%G!<%?$N(BWAVELET$B2r@O$K$D$$$F(B
    $B%;%C%7%g%s#7(B$B!!:BD9!!BgC]@5FA!"!J2,;3Bg3X!K(B
    • $B?9M50l!JARI_;TN)C;4|Bg3X!K!"EDCfK-!"?b?e6&G7!J2,;3Bg3X!K(B
      $B!!JQ?t$N0lIt$rMQ$$$?$BBgC]@5FA!J2,;3Bg3X!K!"(BWilliam J.Schull$B!JJ| $B!!G>>c32%G!<%?$HB?JQNL2r@O!J=P@8A0HoGx!K(B
    • A.S.M.Shafiul Islam$B!"6yC+9'MN!"@5K!CO9'M:!J9-EgBg3X!K(B
      $B!!(BOn an approximation of average growth curve for a nonlinear growth model