$BF|K\7W;;5!E}7W3X2q(B $BBh(B2$B2s%7%s%]%8%&%`%W%m%0%i%`(B
$BBh#1F|!!#1#07n#2#0F|!JLZ!K(B
(I<]N_<^3Q$B0Q0wD90';"(B$B!!?yB<@5I'!J6e=#El3$Bg3X!K(B
$B3+:E5!4X$N0';"(B$B!!>>;38x0l!J6e=#El3$Bg3X!K(B
$B2qD90';"(B$B!!@uLnD90lO:!J6e=#Bg3X!K(B
$B!]6&DL%F!<%^!'7P:Q$H7P1D$NZJ,@O!!7W;;5!$NMxMQ!](B
$B%;%C%7%g%s#1(B$B!!:BD9!!6b;RN4?C!J6e=#El3$Bg3X!K(B
- $BM-N$E5;0!JAO2ABg3X!K(B
$B!!El5~<~JUET;T$N5o=;J,2=9=B$$K4X$9$kE}7W3XE*8&5f!!I\Cf;T$N;vNc#1#9#7#0!A#1#9#8#0(B
- $B66K\
$B!!309q0YBXJQF0$K4X$9$k0l9M;!(B
- $B:=ED5H0l!JAO2ABg3X!K(B
$B!!4k6H6H@SI>2A$K4X$9$k0l9M;!(B
$B%;%C%7%g%s#2(B$B!!:BD9!!EDCfK-!J2,;3Bg3X!K(B
- $BF;2H9,!J6e=#El3$Bg3X!K(B,$B@uLnD90lO:!J6e=#Bg3X!K(B
$B!!#M#L#E%7%9%F%`$G$NDI2C2rK!$K$D$$$F(B
- $B0lB
$B!!>r7oIUL\E*4X?t$N:GE,CMC5:w(B
- $B
$B!!(BAn Intelligent Data Analysis System-IDAS
- $B6bF#9@;J!J9-EgBg3X!K!$7(C+9'MN!J9-EgBg3X!K(B
$B!!%R%H$N@.D9$N0l2r@O
$B!]6&DL%F!<%^!'%Q%=%3%sE}7W%=%U%H%&%'%"!](B
$B%;%C%7%g%s#3(B$B!!:BD9!!@P66M:0l!JF|K\EE5$!K(B
- $B
$B!!#M(Bi$B#c#r#o!]#N#I#S#A#N%7%9%F%`3+H/$N8=>u(B
- $BEDB<5AJ]!JE}7W?tM}8&5f=j!K(B
$B!!%Q%=%3%sMQ;~7ONs2r@O%=%U%H%&%'%"(B
- $BLZB<9(!J2,;3M}2JBg3X!K(B,$B0lB
$B!!D4::%G!<%?F~NO;Y1g%7%9%F%`(B
- $BF#:j91Zg!J;yEg9)6H@lLg3X9;!K(B
$B!!%Q%=%3%s$K$h$k%G!<%?2r@O(B
$B%G%b%s%9%H%l!<%7%g%s!!%=%U%H%&%'%"$N>R2p(B
- $BF#:j91Zg!J;yEg9)6H@lLg3X9;!K(B
$B!!%Q%=%3%s$K$h$k%G!<%?2r@O(B
- $BJ!?98n!J:nM[C;4|Bg3X!K!$J?0f0B5W!J2,;3Bg3X!K!$OFK\OB>;!J2,;3Bg3X!K(B
$B!!%Q%=%3%s@.@S=hM}%=%U%H(B
- $B?b?e6&G7!J2,;3Bg3X!K!$NSFFM5!J@n:j0e2JBg3X!K(B
$B!!E}7W2r@O%=%U%H%&%'%"#S#e#t#o!]#B(B
- $BEl9,CK!J%7%9%F%`%K%7%D%&!K!$0KF#1Q=S!J%7%9%F%`%K%7%D%&!K(B
$B!!#J#U#S#T!]#P#CBP1~!!%Q!<%=%J%k%3%s%T%e!<%?DL?.%=%U%H#M#P!]:L(B
$BBh#2F|!!#1#07n#2#1F|!J6b!S(B
$B%;%C%7%g%s#4(B$B!!:BD9!!?NLZD>?M!J6e=#Bg3X!K(B
- $BKYFb@5I'!J6e=#El3$Bg3X!K(B
$B!!AG7A:`2C9)J}<0$NA*BrI>2A$K4X$9$k8&5f(B
- $BDxLn??!J6e=#6&N)Bg3X!K(B
$B!!Bg3X!$C;Bg$K$*$1$kE}7W$H7W;;5!650i$N8=>u$HLdBjE@(B
- $B9>Eg?-6=!J6e=#El3$Bg3X!K(B,$B@uLnD90lO:!J6e=#Bg3X!K(B
$B!!@x:_%^%k%3%UO":?%b%G%k$K$D$$$F(B
- $BEDCfK-!J2,;3Bg3X!K(B,$BHx9b9%@/!J2,;3M}2JBg3X!K(B
$B!!(BSensitivity Analysis in Maximum Likelihood Factor Analysis
$BFCJL9V1i(B
$B!!:dED=SJ8!JEl3$Bg3X!!>pJs5;=Q%;%s%?!
$B%;%C%7%g%s#5(B$B!!:BD9!!1J0fIp>
- $BGO>l9/0]!JE}7W?tM}8&5f=j!K(B
$B!!%0%i%UE}7W2r@OK!$N?tM}(B
- $BEOJU=(>O!J1vLn5A2r@O%;%s%?!e=S>;;J!J1vLn5A2r@O%;%s%?!
$B!!B?72H=JL2r@O$K$*$1$k@-G=$NI>2A(B
- $Bh@>B9/!J;3G7Fb@=Lt!K!$9-2,=(
$B!!NW>2;n83%G!<%?=hM}$K$*$1$kE}7W
$B%;%C%7%g%s#6(B$B!!:BD9!!GO>l9/M:!JE}7W?tM}8&5f=j!K(B
- $B>e:d9@G7!J%X%-%9%H%8%c%Q%s!K(B
$B!!@5J}7AJ,3dI=$K$*$1$k8!DjE}7WNL$NJ,I[$H8!=PNO!]#2!](B
- $B0pED9@0l!J;yEgBg3X!K(B
$B!!$"$kpJs$K4p$E$/@55,J,I[$NJ,;6$N?dDj(B
- $B7*869'
$B!!E}7WE*%G!<%?2r@O$K$*$1$kCN<1(B
- $B?NLZD>?M!J6e=#Bg3X!K(B
$B!!E}7WE*#r#e#a#s#o#n#i#n#g$K$D$$$F(B
$BJD2q$N0';"(B