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Abstract — Hwang et al., (2006) proposed a Fuzzy clusterwise generalized structured component analysis (FCGSCA), which
is a simultaneous analysis of generalized structured component analysis (GSCA) and fuzzy clustering (Bezdek, 1984). The
method detects path structures between variables corresponding to clusters when the data consists of several path structures.
The advantage of the FCGSCA is that researchers can reflect their hypotheses or knowledge on the analysis results. However,
if the number of variables or clusters is larger, interpreting the results becomes difficult because the path weights have a
sign. To overcome this problem, we propose an FCGSCA with non-negative constraint and its majorizing algorithm.
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1 Introduction

Researchers may find it is useful to analyze paths to validate their hypothesis based on given data.
Therefore, Hwang and Takane (2004) proposed a generalized structured component analysis (GSCA),
which has two advantages: First, the objective function is formulated according to the unified frame-
work, and parameter estimation is easily conducted using the alternative least squares (ALS) frame-
work. However, GSCA assumes that data has a homogeneity group. Therefore, if data includes
heterogeneity groups, the estimation weights corresponding to paths are not meaningful.

Thus, researchers conduct a two-step approach by using existing methods: clustering and GSCA. In
the first step, clustering, such as k-means, is applied to data. Next, GSCA is applied to each subgroup
corresponding to the estimated cluster to obtain the results. However, such results cannot be evaluated
because there is no objective function.

Hwang et al., (2006) proposed Fuzzy clusterwise GSCA (FCGSCA), which is a simultaneous analysis
of GSCA and fuzzy clustering (Bezdek, 1984). The method can achieve its purpose when the data
include heterogeneity groups and are useful. However, the application of the method has two problems
in some situations. First, it is difficult to understand the results when the number of clusters or variables
are large because researchers attempt to interpret the meaning of weights for considering their sign.
Second, it is difficult to tune fuzzy parameters because it is difficult to imagine the meaning of fuzzy
based on Bezdek et al.(1984).

To overcome this problem, we propose a new method for non-negative multivariate data: FCGSCA
with non-negative constraint (FCGSCANC), which has three advantages. First, it is easy to interpret
the estimated results because all the estimated weights are non-negative. Therefore, when we attempt
to analyze the meaning of the estimated weights, we do not need to consider its sign. The good
property is known to domain of non-negative matrix factorization (e.g., Lee and Seung, 1999). Second,
we derived the majorization algorithm based on Jansen’s inequation (e.g., Lee and Seung, 1999) and
the inequation by Groenen et al. (2006), subject to non-negativity constraints. Third, we adopted the
fuzzy clustering based on entropy regularization (Miyamoto and Mukaidono, 1999) and not Bezdek
because understanding the tuning parameters of fuzziness is easy.
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2 FCGSCANC

2.1 Objective function of FCGSCANC

In this subsection, we provide the objective function of FCGSCANC. Eq. (2.1) is defined as the objective
function of FCGSCANC and its parameters are estimated through minimization of Eq. (2.1).

L({Aℓ}, {Bℓ}, {Cℓ},U| X,PA,PB,PC, δ) =
n∑

i=1

k∑
ℓ=1

uiℓ∥xT
(i)Vℓ − xT

(i)Aℓ[Bℓ,Cℓ]∥2 + δ
n∑

i=1

k∑
ℓ=1

uiℓ log uiℓ (2.1)

Let X = (x(1), x(2), · · · , x(n))T, then x(i) = (xi j) ∈ R+ (i = 1, 2, · · · ,n; j = 1, 2, · · · , p) is the n × p
multivariate data, where n is the number of objects and p is the number of variables, Further, let PA and
PB be the path structures of cluster ℓ (ℓ = 1, 2, · · · , k), where k is the number of clusters, from observed
to latent variables, and from latent to observed variables, respectively. δ > 0 is the fuzziness tuning
parameter, Aℓ = (a joℓ) ( j = 1, 2, · · · , p; o = 1, 2, · · · , d; ℓ = 1, 2, · · · , k) be weights matrices of cluster ℓ from
the observed to latent variables, where d is the number of components, such that a joℓ ≥ 0 if ( j, o, ℓ) ∈ PA,
else a joℓ = 0. Let Bℓ = (bosℓ) (o = 1, 2, · · · , d; s = 1, 2, · · · , p; ℓ = 1, 2, · · · , k) be the weight matrices of cluster
ℓ from latent to observed variables, such that bosℓ ≥ 0 if (o, s, ℓ) ∈ PB, else bosℓ = 0. Let Cℓ = (coqℓ) (o =
1, 2, · · · , d; q = 1, 2, · · · , d; ℓ = 1, 2, · · · , k) be weight matrices of cluster ℓ from latent to latent variables,
such that coqℓ ≥ 0 if (o, q, ℓ) ∈ PC, else coqℓ = 0, and U = (uiℓ) uiℓ ∈ [0, 1] (i = 1, 2, · · · ,n; ℓ = 1, 2, · · · , k) is
the membership matrix. Here, V is defined as V = (Ip, f (A)), where Ip is the p × p identity matrix and
f (A) is the subset of the column space of A.

Figure 1: Example of path structures

Figure 1 illustrates a path structure, in which the models corresponding to clusters are as follows:
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Then, objects are assigned to path structure 1 or 2 by this method subject to non-negativity constraints.

2.2 Algorithm of FCGSCANC

This subsection shows the FCGSCANC algorithm. The parameters of FCGSCANC are estimated
through ALS.

Algorithm of FCGSCANC

Step 0: Set initial values of Bℓ, Cℓ, (ℓ = 1, 2, · · · , k), suppremental variables λ joiℓ ( j = 1, 2, · · · , p; o =
1, 2, · · · , d; i = 1, 2, · · · ,n; ℓ = 1, 2, · · · , k), η joisℓ ( j = 1, 2, · · · , p; o = 1, 2, · · · , d; i = 1, 2, · · · ,n; s =
1, 2, · · · , p +m; ℓ = 1, 2, · · · , k) and U.

Step 1: Update Aℓ, given Bℓ, Cℓ, λ joiℓ, η joisℓ and U

Step 2: Update B and Cℓ, given Aℓ, suppremental variables λ joiℓ, η joisℓ, and U

Step 3: Update λ joiℓ and η joisℓ , given Aℓ,Bℓ, Cℓ and U

Step 4: Update U, given Aℓ, Bℓ, Cℓ, λ joiℓ and η joisℓ,

Step 5: If stop rule is satisfied, this algorithm is stopped, else back to Step 1.

Next, updated formula of these parameters are shown.

Updated formula of Aℓ (ℓ = 1, 2, · · · , k)
Given Bℓ, Cℓ (ℓ = 1, 2, · · · , k), and U, the updated formula of Aℓ (ℓ = 1, 2, · · · , k) is derived according

to the majorizing function based on both Jansen’s and Groenen’s inequations (2006), as follows:
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where ( j, o, ℓ) ∈ PA and λ joiℓ and η joisℓ , Zℓ = [Bℓ, Cℓ] = (zosℓ) (o = 1, 2, · · · , d; s = 1, 2, · · · , p + m; ℓ =
1, 2, · · · , k) are supplemental variables and Wℓ = (w joℓ) is pre step values of Aℓ. Here, m is the number
of subspaces of a column space of A. If ( j, o, ℓ) ∈ PA and aoℓ belongs to f (Aℓ), Eq. (2.2) is adopted, else
Eq. (2.3) is adopted.



Updated formula of Bℓ, Cℓ (ℓ = 1, 2, · · · , k)
Given Aℓ (ℓ = 1, 2, · · · , k), and U, the updated formulae of Bℓ Cℓ (ℓ = 1, 2, · · · , k) is derived according

to the majorizing function based on Jansen’s inequation as follows
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((o, s, ℓ) ∈ PB ∪ PC) (2.4)

where Zℓ = [Bℓ, Cℓ].

Updated formula of suppremental variables
Given Aℓ, Bℓ Cℓ (ℓ = 1, 2, · · · , k), and U, the updated formulae of supplemental variables are derived

as follows:

λ joiℓ =
u1/2

iℓ xi ja joℓ∑p
j∗=1 u1/2

iℓ xi j∗a j∗t∗
( j = 1, 2, · · · , p.; o = 1, 2, · · · , d; i = 1, 2, · · · ,n; ℓ = 1, 2, · · · , k) (2.5)

η joisℓ =
u1/2

iℓ xi ja joℓzosℓ∑p
j∗=1

∑d
o∗=1 u1/2

iℓ xi j∗a j∗o∗zo∗sℓ
( j = 1, 2, · · · , p ; o = 1, 2, · · · , d; i = 1, 2, · · · ,n; s = 1, 2, · · · , p+m; ℓ = 1, 2, · · · , k)

(2.6)

Updated formula of U
Given Aℓ, Bℓ Cℓ (ℓ = 1, 2, · · · , k), and U, the updated formula of membership U is derived as follows:

uiℓ =
exp
{
− δ−1∥xT

(i)Vℓ − xT
(i)AℓBℓ∥2

}
∑k
ℓ†=1 exp

{
− δ−1∥xT

(i)Vℓ† − xT
(i)Aℓ†Bℓ†∥2

} (i = 1, 2, · · · ,n; ℓ = 1, 2, · · · , k) (2.7)

3 Concluding and Remarks

The numerical simulations and application are shown on the conference.
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