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Abstract — Age–period–cohort (APC) models have been widely used in the analysis of incidence and mortality data.
Bayesian APC models, in which multivariate Gaussian priors are incorporated on age, period and cohort effects, can evade
the identifiability problem. Inference with integrated nested Laplace approximations (INLA) has recently been a useful tool.
An application of the Bayesian APC models with INLA to Japanese liver cancer mortality data is illustrated, in which a
sudden change of the cohort effect was revealed.
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1 Introduction

Cancer has been the leading cause of death for Japanese people. To analyze cancer incidence and
mortality data and to predict mortality rate in the future should be essential to establishing an evidence-
based target in cancer control strategy.

Age–period–cohort (APC) models have been widely used in epidemiology, such as in the analysis
of incidence and mortality data. However, classical APC models have the identifiability problem (e.g.
Kupper et al., 1985), because of the identity: period = cohort + age, and some approaches to overcome
the identifiability problem have been proposed. One way is to consider linear constraints among
parameters or parsimonious parametrization (e.g. Carstensen, 2007). R packages Epi (Hills et al., 2014)
and apc (Nielsen, 2015) are available for the APC analysis.

Another approach to evade the identifiability problem is to put regularization constraints to the
variation in each component of age, period and cohort. This corresponds to a Bayesian approach in
which multivariate Gaussian priors are incorporated on age, period and cohort effects. Nakamura
(1986) considered a Bayesian APC model, in which successive parameters on age, period and cohort
effects were assumed to change gradually, and smoothing parameters were estimated by an empirical
Bayes method. Bayesian hierarchical approaches to the APC model have also been studied; see Schmid
and Held (2007) (and references therein), in which Markov chain Monte Carlo (MCMC) algorithm was
used for inference. Riebler et al. (2012) used integrated nested Laplace approximations (INLA) (Rue et
al., 2009) for inference in Bayesian APC models, which enable fast computation and have equivalent
performance with MCMC.

In this paper we apply Bayesian APC models to Japanese liver cancer mortality data, and illustrate
usefulness of the Bayesian APC models and inference with INLA.

2 Bayesian age–period–cohort models

Let yi jk be the number of deaths or incidences and ni jk be the populations, observed for the i-th age
group (i = 1, . . . , I), j-th period group ( j = 1, . . . , J) and k-th cohort group (k = 1, . . . ,K). The following
identities hold: Agei + Cohortk = Period j. Consider a Poisson model

yi jk ∼ Po(ni jkλi jk), i = 1, . . . , I; j = 1, . . . , J; k = 1, . . . ,K, (2.1)

where λi jk is the unknown relative risk. The APC model has the following form on the linear predictor
ηi jk:

log(λi jk) ≡ ηi jk = µ + αi + β j + γk, (2.2)
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where µ, α j, β j and γk are unknown constants representing mean, age, group and cohort effects,
respectively.

In Bayesian analysis of the APC model (2.2), we incorporate priors such as follows on each of the
age, period and cohort effects: for example, on age effect {αi},
• Random walk prior of first order (RW1): p(αi) ∝ 1 marginally, and

αi − αi−1 ∼ N(0, θ−1
α ), i.e., αi|αi−1 ∼ N(αi−1, θ

−1
α ), i = 2, . . . , I,

which assumes a constant trend over time. The precision parameter θα controls variation.

• Random walk prior of first order (RW2): p(αi) ∝ 1 marginally, and

αi − 2αi−1 + αi−2 ∼ N(0, θ−1
α ), i.e., αi|αi−1, αi−2 ∼ N(2αi−1 − αi−2, θ

−1
α ), i = 3, . . . , I,

which assumes a linear trend over time. The precision parameter θα controls smoothness.

These priors play a role of solving the identifiability problem (Schmid and Held, 2007). Priors on
period and cohort effects {β j} and {γk} are incorporated similarly, with precision parameters θβ and
θγ, respectively. Moreover, hyper-priors such as gamma distributions are introduced to the precision
parameters. For the constant term µ in (2.2), we usually consider a non-informative flat prior.

3 Bayesian inference

3.1 Latent Gaussian models

The Bayesian APC model described in Section 2 belongs to the class of latent Gaussian models (Rue et
al., 2009), which is characterized as follows:

• y = {yi jk} is a vector of observations, each of which follows independently the distribution
p(yi jk|ηi jk,θ) for a given latent variable, ηi jk in the APC model, as described next.

• z = {ηi jk, µ, αi, β j, γk} is a high-dimensional vector of latent variables, of which the prior forms
an intrinsic Gaussian Markov random field (GMRF) (Rue and Held, 2005), which follows the
multivariate normal distribution with mean vector 0 and sparse precision matrix Q(θ). Let p(z|θ)
be its density.

• θ = (θα, θβ, θγ) is a hyper-parameter vector. Let π(θ) be a hyper-prior on θ, which is usually
non-normal.

The joint posterior density of (z,θ) becomes, via the Bayes’ theorem,

π(z,θ|y) ∝
∏
i, j,k

p(yi jk|ηi jk,θ) · p(z|θ)π(θ).

3.2 Integrated nested Laplace approximation

The latent Gaussian model described above is regarded as a hierarchical Bayes model, and we are
mainly interested in predicting each latent variable, say zi, that is, obtaining its marginal posterior
distribution:

p(zi|y) =
"
π(z,θ|y)dz−i dθ. (3.1)

The marginalization in (3.1) requires high-dimensional integration. The integrated nested Laplace
approximation (INLA), proposed by Rue et al. (2009), enables fast computation without posterior sam-
pling, using the Laplace approximation of the posterior distribution of the sparse latent variables, which
is normally approximated, and using numerical integration on the distribution of hyper-parameters,
which is non-normal. It has been shown that the INLA has comparable estimation performance to the
Markov chain Monte Carlo method (Rue et al., 2009; Riebler et al., 2012).

An R package INLA (http://www.r-inla.org/) (Martino and Rue, 2010) for Bayesian analysis with
the latent Gaussian models and the INLA is available, and we used it through our study.



4 Analysis of Japanese liver cancer mortality data

Japanese cancer mortality data are based on Vital Statistics Japan (Ministry of Health, Labour and
Welfare), and can be available from the website of Cancer Registry and Statistics, Cancer Information
Service, National Cancer Center Japan: http://ganjoho.jp/reg_stat/statistics/dl/index.html.
The populations and the numbers of liver cancer death, separated by gender, are recorded every year
from 1958 to 2014 for each of 5-year age categories. The cohort category has 5-year length and is shifted
year-by-year. Analyses of the Japan liver cancer data were also conducted by Kamo et al. (2011), Tonda
et al. (2015) and so on.

We considered the Bayesian APC models described in Section 2 and conducted Bayesian inference
with INLA as in Section 3. The random walk priors of order 1 or 2 (RW1 or RW2) were incorporated
for each of age, period and cohort effects. The deviance information criterion (Spiegelhalter et al., 2002;
Gelman et al., 2014)

DIC = −2 log p(y|ẑB, θ̂B) + 2dDIC, (4.1)

was computed for each combination of the priors, where ẑB and θ̂B are Bayes estimates of z and
θ, respectively, and dDIC is the effective number of parameters. Bayesian inference with INLA and
computation of the DIC value were conducted by the R function inla of the package INLA.

The DIC values for some combinations of the priors are listed in Table 1. For the male data set, the
model with RW1 priors on age, period and cohort effects gave the smallest DIC value, while for the
female data set, the model with RW2 priors on age and period effects and RW1 priors on cohort effect
gave the smallest DIC value, The model with RW2 priors on age, period and cohort effects fitted poorly
for both male and female data sets, so DIC values are not listed.

Figure 1 shows posterior means and 95% credible intervals of age, period and cohort effects in the
model giving smallest DIC, fitted to male and female data. The age effect was non-monotonic; the risk
was higher in infancy, getting lower until 15 years old, and getting higher with age. On the cohort
effect, the risk was changed suddenly and became highest around the birth year of 1930. The sudden
change would explain the reason why the model with RW2 prior for the cohort effect was poor, because
RW2 was too smooth. The period effect was smaller than the age and cohort effects.

It would be possible to provide prediction in future periods by extrapolation using the fitted
Bayesian APC models.

5 Concluding remarks

We illustrated an application of the Bayesian age–period–cohort models to Japanese liver cancer mor-
tality data. A sudden change of the cohort effect was suggested by selecting a model with RW1 prior.
In our future works, we need to compare the performance of INLA with some other computation
methods MCMC and the empirical Bayes method with simple Laplace approximation in the Bayesian
APC models. Also, we should apply the described method to incidence and mortality data other than
liver cancer. Moreover, we intend to consider a Bayesian APC model with region effects using cancer
data separated by prefecture.

Table 1: DIC values for some combinations of the priors

{αi} {β j} {γk} Male Female
RW1 RW1 RW1 12050.15 8955.228
RW2 RW1 RW1 12050.56 8957.157
RW2 RW2 RW1 12052.43 8938.019
RW2 RW1 RW2 12054.91 8953.035



0 20 40 60 80

−
4

−
2

0
2

4

f(age) (male)

age

liv
er

.m
al

e.
ag

e$
m

ea
n

1960 1980 2000

−
4

−
2

0
2

4

f(period) (male)

period

liv
er

.m
al

e.
pe

rio
d$

m
ea

n

1880 1920 1960 2000

−
4

−
2

0
2

4

f(cohort) (male)

cohort

liv
er

.m
al

e.
co

ho
rt

$m
ea

n

0 20 40 60 80

−
4

−
2

0
2

4

f(age) (female)

age

liv
er

.fe
m

al
e.

ag
e$

m
ea

n

1960 1980 2000

−
4

−
2

0
2

4

f(period) (female)

period

liv
er

.fe
m

al
e.

pe
rio

d$
m

ea
n

1880 1920 1960 2000

−
4

−
2

0
2

4

f(cohort) (female)

cohort

liv
er

.fe
m

al
e.

co
ho

rt
$m

ea
n

Figure 1: Posterior means and 95% credible intervals of age, period and cohort effects.
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