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Abstract — Copy number variants (CNVs) have been implicated in a variety of neurodevelopmental disorders, including
autism spectrum disorders, intellectual disability and schizophrenia. Recent advances in high-throughput genomic tech-
nologies have enabled rapid discovery of many genetic variants including CNVs. As a result, there is increasing interest in
studying the role of CNVs in the etiology of many complex diseases. Despite the availability of an unprecedented wealth
of CNV data, methods for testing association between CNVs and disease-related traits are still under-developed due to the
low prevalence and complicated multi-scale features of CNVs. We propose a novel CNV kernel association test (CKAT) in
this paper. To address the low prevalence, CNVs are first grouped into CNV regions (CNVR). Then, taking into account the
multi-scale features of CNVs, we first design a single-CNV kernel which summarizes the similarity between two CNVs, and
next aggregate the single-CNV kernel to a CNVR kernel which summarizes the similarity between two CNVRs. Finally,
association between CNVR and disease-related traits is assessed by comparing the kernel-based similarity with the similarity
in the trait using a score test for variance components in a random effect model. We illustrate the proposed CKAT using
simulations and show that CKAT is more powerful than existing methods, while always being able to control the type I error.
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1 Introduction

Copy number variants (CNVs) are deletions and duplications of DNA segments, which have been
implicated in a variety of neurodevelopmental disorders, including autism spectrum disorders, in-
tellectual disability and schizophrenia [Girirajan et al., 2011, Sebat et al., 2007]. Understanding the
relationship between CNVs and these diseases can contribute important new insights into the under-
lying genetics etiology and may further lead to effective means in prevention and treatments. A useful
means to study the complex relationship between CNVs and human health conditions is through as-
sociation studies [McCarroll and Altshuler, 2007]. A powerful mode of genetic association analysis
is collapsing methods, which study the association between a group of genetic variants and traits.
Such methods have been widely used in SNPs association analysis [Wu et al., 2010] and rare variants
association analysis [Wu et al., 2011]. However, these collapsing methods cannot be directly applied to
CNV association analysis due to its unique features (low prevalence, multi-scale features, phenotypic
heterogeneity, etc.). New methods are necessary.

In this paper, to utilize both type and size information in a CNV, we propose the CNV kernel
association test (CKAT). We first design a single-CNV kernel which accounts for the multi-scale features
of a CNV. Intuitively speaking, the kernel is used as a similarity measure between two CNVs. To
overcome low prevalence of CNVs, we pool CNVs together to form CNV regions (CNVRs) and carefully
aggregate the single-CNV kernel to a CNVR kernel which describes the similarity between two CNVRs.
Compared with a single CNV, more samples are likely to have CNVs detected in a region which can
makes the CNVR kernel more informative. Finally, association between CNVR and the trait is tested
by comparing the similarity in CNVRs (captured by the CNVR kernel) to that in the trait. In particular,
the trait we considered in this paper is disease status. If the CNVR similarity between two patients
(or two healthy controls) is consistently higher than the CNVR similarity between one patient and one
healthy control, then it may suggest existence of association between the CNVR and the disease risk.
Statistically speaking, the similarity comparison is evaluated in a logistic random effect model and the
p-value for the association test is also analytically calculated via a variance component score test in the
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logistic regression framework. Using extensive simulation studies, we demonstrate that the proposed
CKAT always has correct type I error rate and high power in a wide range of settings.

2 Methodology

2.1 Kernel-based association analysis

Notationally, let yi be the disease status with yi = 1 denoting the disease group and yi = 0 denoting the
control group, where i = 1, . . . ,n are subjects. Let Ri = (Xi

1, . . .X
i
pi

) be the CNVs within the CNVR from
subject i. The following logistic regression model is used to relate the disease risk to CNVs

logit[Pr(y1 = 1)] = β0 + f (Ri), (2.1)

where f (·) is a centered unknown function in the space spanned by the CNVR kernel kR(·, ·). Based on
(2.1), the hypothesis of no association between disease and CNVs can be tested as H0 : f (·) = 0. To
test H0 : f (·) = 0, one way is to treat the CNV effect vector F = ( f (R1), . . . , f (Rn))′ as a random effect
vector which is distributed as N(0, τK), where τ ≥ 0 and K is the n × n CNVR kernel matrix. It has
been shown that testing H0 : f (·) = 0 is equivalent to testing H0 : τ = 0 in the logistic random effect
model, and moreover, τ is a variance component parameter in the logistic random effect model, which
can be tested using a likelihood-based score test [Wu et al., 2010, 2011]. The remaining task is to design
appropriate CNV kernels for association analysis.

2.2 Single CNV kernel

Let X = (X(1),X(2)) denote a CNV, where X(1) is length/size of the CNV which equals to end position
minus start position, and X(2) is the type information of the CNV, taking values 1 (deletion CNV) and 3
(duplication CNV). Considering two arbitrary CNVs X1 and X2, we define the kernel function between
two CNVs as

k(X1,X2) = exp
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 (2.2)

As mentioned before, k(X1,X2) is used to describe the similarity between X1 and X2. As defined in (2.2),
both size and type of CNV contribute to the kernel similarity measure. The size of a CNV, X(1), can be
in the order of thousands of base pairs. Even the size difference (X(1)

1 − X(1)
2 ) can take a wide range of

values. Compared with the second term, the first term can be really small. Hence the shape parameter
ρ > 0 can balance the contribution of size and type in describing CNV similarities. The selection of
ρ depends on one’s belief on the data. If one thinks that CNV size is more important in determining
the disease, then a larger ρ should be used otherwise the first term would be dominated by the second
term. On the other hand, if one thinks CNV type are more likely to be disease-related, then smaller ρ’s
are preferred. In practice, without such background knowledge, we chose the ρ such that contributions
of size and type are comparable.

2.3 CNV region kernel

Kernel-based association analysis are often conducted in the variant-set level rather than single variant
level [Wu et al., 2010, 2011]. Hence, kernel-based CNV association analysis should focus on CNVRs
with multiple CNVs instead of a single CNV [Tzeng et al., 2015]. Therefore, we propose a CNVR kernel
which describes the sample pairwise similarity between all CNVs in a CNVR. Suppose the CNVR is
pre-fixed, and let Ri = (Xi

1, . . .X
i
pi

) be the CNV profiles of sample i in that region, where Xi
1, . . .X

i
pi

are CNVs sorted according to their positions and pi is the number of CNVs in sample i in the region.
Similarly, we have a corresponding CNVs series R j = (X j

1, . . .X
j
p j

) for another sample j. Then the CNVR
kernel function between sample i and j in this particular region is defined as

kR(Ri,R j) = max
l=0,1,...,pi−p j

p j∑
t=1

k(Xi
t+l,X

j
t); if pi ≥ p j > 0, (2.3)



where k(·, ·) is the single-CNV kernel defined in (2.2). The maximum operation in the definition of
kR(·, ·) searches for the best CNV-to-CNV correspondence in the CNV profiles of sample i and j in the
CNVR.

3 Numerical studies

Without loss of generality, we assumed the CNVR to be the interval [0,1] throughout this simulation.
We compared CKAT to the widely used Fisher’s exact test [Agresti and Kateri, 2011]. A total of 600
subjects were simulated with 300 cases and 300 controls. For subject i, we randomly generated mi

CNVs, where mi took values 0, 1, 2, 3 with probabilities 0.6, 0.2, 0.1, 0.1 respectively. We simulated
2mi endpoints and sorted them from smallest to largest. The first two endpoints formed the position
information of the first CNV, the next two formed the second CNV, and so on. Finally, we randomly
simulated a Bernoulli variable with success probability 0.5 as the type of each CNV.

After the CNVs were simulated, we generated the group label yi from the following logistic model

logit(πi) = β0 +

mi∑
j=1

[{
βDel

j I[X(2)
i j = 1] + βDup

j I[X(2)
i j = 3]

}
X(1)

i j

]
, (3.1)

where πi = Pr(yi = 1), β0 = −4 implies a prevalence of roughly 0.018 for ASD, Xi j = (X(1)
i j ,X

(2)
i j ) is the

jth CNV of the ith subject, and βDel
j , βDup

j are the log of the odd ratio (OR) of CNV j for deletion and

duplication respectively. βDel
j and βDup

j shared the same absolute values but might have different signs.

For simplicity, we called a CNV risk-associated (R) if the associated βDel
j > 0 or βDup

j > 0, protective (P) if
β-coefficient is smaller than 0, or neutral (N) on ASD if β-coefficient equals 0. A heterogeneous CNVR
containing both deletions and duplications with even probability was considered in this simulation.
The effects of deletions and duplications were (Del, Dup)= (R,R), (R,N), (R,P), (P,R). The results are
reported in Figure 1 (type I error) and Figure 2 (power).
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Figure 1: − log10 p-value based QQ plots of CKAT and Fisher’s exact test. The x axis represents − log10
expected p-values and the y axis represents − log10 observed p-values.
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Figure 2: Empirical power of CKAT and Fisher’s exact test. The black line is for CKAT and the red line
is for Fisher’s exact test.



4 Discussions and summary

We have proposed the CKAT to evaluate the association between CNVs and disease-related traits. The
kernel implemented in CKAT is elaborately designed so that it can capture special features of CNVs,
such as multi-dimensionality (type and size) and heterogeneity effects. The kernel (2.2) is defined in a
rather ad hoc fashion; however, we do not pursue an optimal CNV kernel choice in this paper. After
the kernel is designed, we then apply the kernel strategy in the literature [Wu et al., 2010, 2011] to test
the association between CNVR and disease-related outcomes. Simulation studies show that CKAT can
always protect the type I error and have higher power than existing methods under a wide range of
scenarios. Finally, CKAT is illustrated with a real data examining the association between CNV and
autism. Many CNV regions are detected as significantly associated with ASD. Taking Chromosome 22
as an example, two regions are detected by CKAT. One has a well-established association with ASD in
previous studies. The other contains a putative genes, ADORA2A, which might be functionally related
to ASD. Further work is needed to understand the biological and genetic mechanisms of the region on
ASD.

The proposed CKAT calculates the p-value of the association test analytically, which is computa-
tionally efficient and flexible for CNV association analysis, as demonstrated in our numerical studies.
Compared with existing methods, it always has adequate power for detecting an existing association.
Moreover, CKAT also has good performance when the nominal significance level of the test is extreme,
which makes it a desirable tool in genome-wide association analysis where multiple testing burden is
usually very high. Besides serving as a useful tool in CNV association analysis, the way of incorporat-
ing both CNV length information and CNV type information in the CNV kernels can be also extended
to pooling information from different data types. Given the increasing availability of genome-wide
information form different data sources, this mode of analysis can shed light on integrative genomics
across multiple platforms in the foreseeable near future.
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