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Abstract 

Abstract: Single-cell transcriptomics reveals gene expression heterogeneity but suffers from 

stochastic dropout and characteristic bimodal expression distributions in which expression is 

either strongly non-zero or non-detectable. We propose a two-part, generalized linear model for 

such bimodal data that parameterizes both of these features. We argue that the cellular 

detection rate, the fraction of genes expressed in a cell, should be adjusted for as a source of 

nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. 

It provides insights into how networks of co-expressed genes evolve across an experimental 

treatment. MAST is available at https://github.com/RGLab/MAST. 

Keywords: Bimodality; Cellular Detection Rate; Co-expression; Empirical Bayes; Generalized 

Linear Model; Gene set enrichment analysis 

 

Background: 

Whole transcriptome expression profiling of single cells via RNAsequencing (scRNA-seq) is the 

logical apex to single cell gene expression experiments. In contrast to transcriptomic 

experiments on mRNA derived from bulk samples, this technology provides powerful multi-

parametric measurements of gene co-expression at the single-cell level.  However, the 

development of equally potent analytic tools has trailed the rapid advances in the biochemistry 

and molecular biology, and several challenges need to be addressed to fully leverage the 

information in single-cell expression profiles.   

 

First, single-cell expression has repeatedly been shown to exhibit a characteristic bimodal 

expression pattern, wherein the expression of otherwise abundant genes is either strongly 

positive, or undetected within individual cells. This is due in part to low starting quantities of 

RNA such that many genes will be below the threshold of detection, but there is also a biological 

component to this variation(termed extrinsic noise in the literature) that is conflated with the 

https://github.com/RGLab/MAST
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technical variability[1-3]. We and other groups[4-7] have shown that the proportion of cells with 

detectable expression reflects both technical factors and biological differences between 

samples.  Results from synthetic biology also support the notion that bimodality can arise from 

the stochastic nature of gene expression[2, 3, 8, 9].   

 

Secondly, measuring single cell gene expression might seem to obviate the need to normalize 

for starting RNA quantities, butrecent work shows that cells scale transcript copy number with 

cell volume (a factor that affects gene expression globally) to maintain a constant mRNA 

concentration and thus constant biochemical reaction rates[10, 11]. In scRNA-seq, cells of 

varying volume, and hence mRNA copy number, are diluted to an approximately fixed reaction 

volume leading to differences in detection rates of various mRNA species that are driven by the 

initial cell volumes.Technicalassay variability  (e.g. mRNA quality, pre-amplification efficiency) 

and extrinsic biological factors (e.g. nuisance biological variability due tocell size) that globally 

affect transcription remain, and can significantly influence expression level measurements. Our 

approach easily allows for estimation and control of the cellular detection rate (CDR) while 

simultaneously estimating treatment effects.  

 

Previously, Kharchenko et al[6] developed a so-called three-component mixture model to test 

for differential gene expression while accounting for bimodal expression. Their approach is 

limited to two-class comparisons and cannot adjust for important biological covariates such as 

multiple treatment groups and technical factors such as batch or time information, limiting its 

utility in more complex experimental designs. On the other hand, several methods have been 

proposed for modeling bulk RNA-seq data that permit sophisticated modeling through linear[12] 

or generalized linear models[13, 14] but these models have not yet been adapted to single-cell 

data as they do not properly account for the observed bimodality in expression levels. This is 

particularly important when adjusting for covariates that might affect the expression rates. As we 
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will demonstrate later, such model mis-specification can significantly affect sensitivity and 

specificity when detecting differentially expressed genes and gene-sets. 

 

Here, we propose a Hurdle model tailored to the analysis of scRNA-seq data, providing a 

mechanism to address the challenges noted above. It is a two-part generalized linear model that 

simultaneously models the rate of expression over background of various transcripts, and the 

positive expression mean. Leveraging the established theory for generalized linear modeling 

allows us to accommodate complex experimental designs while controlling for covariates 

(including technical factors) in both the discrete and continuous parts of the model. We 

introduce the cellular detection rate (CDR): the fraction of genes that are detectably expressed 

in each cell, which, as discussed above, acts as a proxy for both technical (e.g. dropout, 

amplification efficiency, etc.) and biological factors (e.g.cell volume and other extrinsic factors 

other than treatment of interest) that globally influence gene expression.As a result it represents 

an important source of variability in scRNA-seq data that needs to be modeled (Figure 1). Our 

approach of modeling the CDR as a covariate, offers an alternative to the weight correction of 

Shalek et al[5] that does not depend on the use of control genes and allows us to jointly 

estimate nuisance and treatment effects. Our framework permits the analysis of complex 

experiments, such as repeated single cell measurements under various treatments and/or 

longitudinal sampling of single cells from multiple subjects with a variety of background 

characteristics (e.g. gender, age, etc.) as it is easily extended to accommodate random effects. 

These features are especially important when sampling single cellssince there are multiple 

sources of variance (e.g. cell-to-cell variance within a subject, and subject-to-subject variance). . 

These type of experiments/designs will become routine in future single-cell studies such as for 

clinical trials where single-cell assays will be performed on large cohorts with complex designs. 

 



 5 

In our Hurdle model, differences between treatment groups are summarized with pairs of 

regression coefficients whose sampling distributions are available through bootstrap or 

asymptotic expressions, enabling us to perform complementary differential gene expression and 

gene set enrichment analyses (GSEA). We use an empirical Bayesian framework to regularize 

model parameters, which helps improve inference for genes with sparse expression, much like 

what has been done for bulk gene expression[15]. Our GSEA approach accounts for gene-gene 

correlations, which is important for proper control of type I errors[16]. This GSEA framework is 

particularly useful for synthesizing observed gene-level differences into statements about 

pathways or modules. Finally, our model yields single cellresiduals that can be manipulated to 

interrogate cellular heterogeneity and gene-gene correlations across cells and conditions. We 

have named our approach MAST for Model-based Analysis of Single-cell Transcriptomics.  

 

We illustrate the method on two data sets. We first apply our approach to an experiment 

comparing primary humannon-stimulatedand cytokine-activated Mucosal-Associated Invariant T 

(MAIT) cells.MAST identifies novel expression signatures of activation, andthe single-cell 

residuals produced by the model highlights a population of MAIT cells showing partial activation 

but no induction of effector function. We thenillustrate the application of MAST to a previously-

published complex experiment studyingtemporal changes in murine bone marrow-derived 

dendritic cells subjected to LPS stimulation. We both recapitulate the findings of the original 

publication and describe additional coordinated gene expression changes at the single-cell level 

across time in LPS (lipopolysaccharide) stimulated mDC (myeloid dendritic cells). 

 

Results and discussion 

Our MAST framework models single-cell gene expression using a two-part generalized linear 

model. One component of MAST models the discrete expression rate of each gene across cells, 

while the other component models the conditional continuous expression level (conditional on 
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the gene being expressed). We define the cellular detection rate (CDR) as the proportion of 

genes expressedin a single cell.  

The CDR for cell 𝑖𝑖 is: 

 𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖 = 1/𝑁𝑁� 𝑧𝑧𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (1) 

where 𝑧𝑧𝑖𝑖𝑖𝑖  is an indicator if gene g  in cell i was expressed above background, which we either 

take as zero, or an conservatively estimated non-zero threshold  (see Supplementary methods).  

The CDR is not sensitive to how the background is defined, nor does it change substantially 

when only putative control (housekeeping) genes are used in the summation in equation 1.Our 

thresholding approach does not adversely affect detection of differentially expressed genes and 

serves to make the continuous expression (Et>0) more Normal (Supplementary Figure 1). 

 

MAST can account for variation in the cellular detection rate.  The principal component 

analysis (PCA) shown in Figure 1 demonstrates that the cellular detection rate (see Methods)is 

an important source of variability. It is highly correlated with the second principal component 

(PC, Pearson’s rho=0.76 grouped, 0.91 stimulated, 0.97 non-stimulated) in the MAIT dataset 

and with the first PC (rho=0.92 grouped, 0.97 non-stimulated, 0.92 LPS, 0.89 PAM, 0.92 PIC) in 

the mDC dataset. Since we observe larger CDR variability within treatment groups than across 

groups, it is likely that the CDR is a nuisance factor. This is further supported by the fact that the 

CDR calculated using control (e.g. housekeeping) genes is highly correlated with the 

CDRcalculated over all genes (Supplementary Figure 2). Its role as a principal source of 

variation persists across experiments (Figure 1).   

 

We thus conjecture that CDR is a proxy for unobserved nuisance factors that should be 

explicitly modeled. In particular, we suggest that the CDR captures variation in global 
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transcription rate due to difference in cell size (among other factors)[11], as well as technical 

variation due to factors such ascell viability and efficiency in first strand synthesis. Fortunately, 

MAST easily accommodates covariates, such as the CDR, and more importantly allows joint, 

additive modeling of them with other biological variables of interest, with the effect of each 

covariate decomposed into its discrete and continuous parts. Applying an analysis of deviance 

with MAST (see Methods), we quantified the amount of variability that could be attributed to 

CDR. The CDR accounts for 5.2% of the deviance in the MAIT data set and 4.8% in the mDC 

data set for the average gene, and often times much more than that:it comprises more than 9% 

of the deviance in over 10% of genes in both data sets, particularly for the discrete component 

of the model (Supplementary Figure 3).It should also be noted that the CDR deviance estimates 

for many of the genes are comparable (if not greater) to the treatment deviance estimates. It is 

possible that the CDR and treatment effects could be partially confounded, for example, treated 

cells could become larger in volume. We explored the effect of confounding between the CDR 

and treatment effects on the MAST false positive rate in the presence and absence of CDR 

control in the MAST model (Supplementary Figures 4A and B). Controlling for CDR improves 

the sensitivity and specificity of MAST in the presence of confounding, and doesn’t negatively 

impact its performance either in the absence of confounding or in the absence of a CDR effect. 

 

That CDR predicts expression levels contradicts the model of independent expression between 

genes, since the level of expression (averaged across many genes) would not affect the level in 

any given gene were expression independent.It is especially important to adjust for it when 

testing for co-expression between genes, or the apparent correlation between genes is greatly 

inflated (see Residual analysis identifies networks of co-expressed genes implicated in 

MAIT cell activation)  
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Finally, we have investigated the relationship between our approach and the weight correction 

of Shalek et al[5] and other technical bias correction approaches like RUV and SVA 

(Supplementary Figure 5A and B)[17, 18]. We observe a strong linear relationship between the 

CDR and the weights of Shalek et al[5], as well as with the first component of SVA and second 

component of RUV. Thus, use of the CDR as a covariate can be seen as a statistically rigorous 

way to correct for the dropout biases of Shalek et al[5], without the need to use control genes, 

and more importantly with the ability to control for these while estimating treatment effects. 

Although CDR is correlated to the latent components found via RUV or SVA in the data sets we 

consider here (Supplementary Figure 5 C), CDR has the advantage of biological interpretability 

as a cellular scaling factor. 

 

Single-cell sequencing identifies a transcriptional profile of MAIT cell activation 

We applied MAST to our MAIT dataset to identify genes up-or down-regulated by cytokine 

stimulation while accounting for variation in the CDR (see Methods). We detected 291 

differentially expressed genes, as opposed to 1413 when excluding CDR. To determine whether 

this was due to a change in ranking or a simply a shift in significance, we compared the overlap 

between the top 𝑛𝑛 genes in both models(varying 𝑛𝑛 from 100 to 1413), and found that, on 

average, 35% (range 32%-38%) of genes are excluded when CDR is modeled, suggesting that 

inclusion of this variable allows global changes in expression, manifest in the CDR, to be 

decomposed from local changes in expression. This is supported bygene ontology enrichment 

analysis (Supplementary Figure 6) of theseCDR-specific genes (n=539), where we see no 

enrichment for modules associated with treatment of interestThese CDR-specific GO terms(e.g. 

involvement of regulation of RNA stability and protein folding) may hint at biology underlying 

differences in the CDR that are not necessarily associated with treatment. 
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In order to assess the type-I error rate of our approach, we also applied MAST to identify 

differentially expressed genes across random splits of the MAIT cells. As expected, MAST did 

not detect any significant differences (Supplementary Figure7A,B), whereas DEseq and edgeR, 

designed for bulk RNA-seq, detected large number of differentially expressed genes even at 

stringent nominal FDR. SCDE, a single-cell RNA-seq specific method, also had higher false 

discovery rates than MAST. Permutation analysis demonstrated that the null distribution of the 

MAST test statistic was well calibrated (Supplementary Figure 8A).  

We examined the GO enrichment of genes detected by limma, edgeR, DESeq, or SCDE but not 

MAST and found that these sets generally lacked significant enrichment for modules related to 

the treatment of interest(Supplementary Figures 9-12).MAST with CDR control also detected 

enrichment of immune-specific GO terms at a higher rate than other methods (Supplementary 

Figure 13).MAST’s testing framework has better sensitivity and specificitythanthese 

approaches.Among models that do not adjust for CDR, SCDE performs relatively well but  trails 

MAST and limma, which can adjust for CDR. 

 

Figure 2A shows the single-cell expression (log2-TPM) of the top 100 genes identified as 

differentially expressed between cytokine (IL18, IL15, IL12)stimulated(purple) and non-

stimulated (pink) MAIT cells using MAST.  Following stimulation with IL12/15/18, we observe 

increased expression in genes with effector function including Interferon−𝛾𝛾(IFN−𝛾𝛾), granzyme-

B (GZMB) as has been reported in Natural Killer (NK), Natural Killer T-cells (NKT) and memory 

T cells, and a concomitant downregulation of the AP-1 transcription factor network. CD69 is an 

early and only transient marker of activation that can be induced by stimulation of the T cell 

receptor or by cytokine signals. Its downregulation at the mRNA level after 24h is likely 

preceding subsequent protein-level downregulation[19-21]. 
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We used these lists of up- and down-regulated genes to define a MAIT activation score that 

differentiates between stimulated and non-stimulated MAITs as shown in Figure 2B. Thisyields 

a score for each cell, based on the model fit and adjusting for nuisance factors (see 

Methods),defined as the expected expression level across genes in a module. The score 

differentiates stimulated and non-stimulated cells, and demonstrates that the stimulated MAIT 

population is more heterogeneous in its expression phenotype. In particular, a few stimulated 

MAIT cells (SC08, SC54, SC48, SC15, SC46, and SC61 in Figure 2A) exhibit low expression of 

IFN−𝛾𝛾response genes, suggesting these cells didnot fully activate despite stimulation. Post-sort 

experiments via FCM show that the sorted populations were over 99% pure MAITs 

(Supplementary Figure 14A), and exhibited a change in cell size upon stimulation 

(Supplementary Figure 14B), and that up to 44% of stimulated MAITs didn’texpress IFN-𝛾𝛾or 

GZMB following cytokine stimulation (Supplementary Figure 14C). The non-responding cells in 

the RNA-seq experiment likely correspond to these non-responding cells from the flow 

cytometry experiment, andthe observed frequencies of these cells in the RNA-seq and flow 

populations are consistentwith each other ( Pr(observing 6 or fewernon-responding cells) = 0.16 

under binomial sampling). We discuss this heterogeneity in a further section. Importantly, the 

lists of up- and down-regulated genes can be used to define gene sets for gene set enrichment 

analysis in order to identify transcriptional changes related to MAIT activation in bulk 

experiments.  

 

Gene set enrichment analysis highlights pathways implicated in MAIT cell activation. 

We used MAST to perform gene set enrichment analysis(GSEA, see methods) in the MAIT data 

using the blood transcriptional modules of Li et al[22]. The cell-level scores for the top 9 

enriched modules (Figure 3A) continue to show significant heterogeneity in the stimulated and 

non-stimulated cells, particularly for modules related to T-cell signaling, protein folding, 

proteasome function, and the AP-1 transcription factor network.Although the standard 
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deviations of the module scores were greater for stimulated than non-stimulated cells in 7 of the 

top 9 enriched modules (Supplementary Table 2), the magnitude of variability for stimulated and 

non stimulated cells was fairly similar. Enrichment in stimulated cells (green) and non-stimulated 

cells (pink) is displayed for each module for the discrete and continuous components of the 

model (Figure 3B, see Methods), as well as a Z-score combining the discrete and continuous 

parts. The enrichment in the T-cell signaling module is driven by the increased expression of 

IFN-𝛾𝛾, GZMB, IL2RA, IL2RB, and TNFRSF9, 5 of the 6 genes in the module. Stimulated cells 

also exhibit increased energy usage, translation and protein synthesis, while down-regulating 

genes involved in cell cycle growth and arrest (and other cell cycle related modules). The down-

regulation of cell cycle growth inhibition genes indicates that IL-12/15/18 signals are sufficient to 

prepare MAIT cells for cell proliferation. Interestingly, we observe down-regulation of mRNA 

transcripts from genes in the AP-1 transcription factor network. This has been previously 

described in dendritic cells in response to LPS stimulation[23] and, indeed, we observe this 

effect in the mDC data set analyzed here (Supplementary Figure 15).  

 

Our GSEA approachis more powerful than existing methods for bulk RNA-seq data 

(Supplementary Figure 16), and we discover significantly enriched modules with clear patterns 

ofstimulation-induced changesthat other methodsomit (Supplementary Figure 17). Two such 

modules include the “T-cell surface signature” and “chaperonin mediated protein folding, whose 

component genes show elevated expression in response to stimulation (Supplementary 

Figure17A-D).These additional discoveries are not solely due to greater permissiveness in 

MAST.  We applied MAST to identify differentially expressed gene sets across random 

partitions of the non-stimulated cells, to examine its false discovery rate. As expected, MAST 

did not detect any significant differences, which suggests that it has good type I error control 

(Supplementary Figure 7A). 
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Residual analysis identifies networks of co-expressed genes implicated in MAIT cell 

activation. Much of the heterogeneity between the non-responding and responding stimulated 

cells remains even after removal of marginal (gene level) stimulation effects. Since, MAST 

models the expected expression value for each cell, we can compute residuals adjusted for 

known sources of variability (See Methods). The residuals can be compared across genes to 

characterize cellular heterogeneity and correlation. We observe co-expression in the residuals 

from stimulated cells that is not evident in the non-stimulated group (Figure 4A,B).  Since the 

residuals have removed any marginal changes due to stimulation in each gene, the average 

residual in the two groups is comparable. The co-expression observed, meanwhile, is due to 

individual cells expressing these genes dependently, where pairs of genes appear together 

more often than expected under a model of independent expression.   

 

Two clusters of co-expressed genes stand out in the residuals of the stimulated cells (Figure 4 

B). These clusters show coordinated, early up-regulation of GZMB and IFN-𝛾𝛾in response to 

stimulation in MAIT cells and a concomitant decrease in CD69 expression, an early and 

transient activation marker. PCA of the model residuals highlights the non-responsive stimulated 

MAIT cells (Figure 4C).  

 

Accounting for the CDR reduces the background correlation observed between genes 

(Supplementary Figure 18) where nearly 25% of pairwise correlations decrease after CDR 

correction. When the CDR is included in the model, the number of differentially expressed 

genes with significant correlations across cells (FDR adjusted p-value < 1%) decreases from 73 

to 61 in the stimulated cells, and from 808 to 15 in non-stimulated cells. This shows that 

adjusting for CDR is also important for co-expression analyses as it reduces background co-

expression attributable to cell volume, which otherwise results in dense, un-interpretablegene 

networks.  
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Residual analysis of MAIT non-responding stimulated cells.  

The hurdle model expression residuals identify six MAIT cells that do not have a typical 

activated expression profile in response to stimulation (Figures 2 and 3). The proportion of these 

cells detected in the scRNASeq experiment is consistent with what was detected in the flow 

cytometry experiment. The cells exhibit lower levels of IFN-𝛾𝛾and GZMB than activated cells 

(Supplementary Figure 19A), but also exhibit decreased expression of AP-1 component genes 

Fos and FosB, consistent with other stimulated cells (Supplementary Figure 19B). They do not 

produce IFN-𝛾𝛾 or GZMB upon to cytokine stimulation and exhibit expression profiles 

intermediate to non-stimulated and stimulated cells (Supplementary Figure 19C). 

 

 

 

Temporalexpression patterns of mouse dendritic cell maturation 

Shalek et al[5]analyzed murine bone-marrow derived dendritic cells simulated using three 

pathogenic components over the course of six hours and estimated the proportion of cells that 

expressed a gene and the expression level of expressing cells.  We compared results from 

applying our model to those obtained by Shalek et al[5] when analyzing their lipopolysaccharide 

(LPS) stimulated cells. As with the MAIT analysis, we used MAST adjusting for the CDR. MAST 

identified a total of 1359 differentially expressed genes (1996 omitting the CDR), and the CDR 

accounted for 5.2% of the model deviance in the average gene.  

The most significantly elevated genes at 6h include CCL5, CD40, IL12B, and Interferon-

inducible (IFIT) gene family members, while down-regulation was observed for EGR1 and 

EGR2, transcription factors that are known to negatively regulate dendritic cell 

immunogenicity[24].  
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GSEA of mouse bone marrow-derived dendritic cells  

We performed GSEA with the Mouse GO modules and three modules Shalek et al[5]identified. 

The blood transcriptional modules of Li et al[22] are shown in Supplementary Figure 15. Figure 

5 shows module scores for significant GSEA modules for the LPS stimulated cells where the 

heatmap represents Z values (see methods for details). Besides finding signatures consistent 

with the modules from Shalek et. al. (Figure 5A), we identify modules that show similar 

annotation and overlap significantly with the core antiviral and sustained inflammatory 

signatures, including several modules linked to type 1 interferon response and antiviral 

signatures (Figure 5B).  The “cellular response to interferon- beta” signature (n = 22) overlaps 

with the original core antiviral signature (n = 99) by 13 genes (hypergeometric p = 1.24x10-23). 

The response and defense response to virus signatures overlap with the core antiviral signature 

by 17 of 43 and 22 of 74 genes (hypergeometric p=3.64x10-26 and 4.08x10-29, respectively), 

suggesting the core antiviral signature captures elements of these known signatures. The 

chemokine (n=16) and cytokine activity (n=51) modules overlap with the sustained inflammatory 

(n = 95) module by 5 and 12 genes, respectively (hypergeometric p=5.10x10-9 and 9.53x10-16). 

Our modeling approach identifies the two “early marcher” cells in the core antiviral module 

(marked with triangles on Figure 5A) corresponding to the same cells highlighted in Figure 4b of 

Shalek et al[5]. Other modules exhibiting significant time-dependent trends include a module of 

genes involved in the AP-1 transcription factor network that is down-regulated (Supplementary 

Figure 15), a finding which has been previously shown in human monocytes following LPS 

stimulation[23]. As with the MAITs, GSEA permutation analysis to evaluate type I error rates did 

not identify any significant modules (data not shown). These results further confirm the original 

findings and demonstrate the increased sensitivity of our approach.GSEA heatmaps for the 

other stimulations can be found in Supplementary Figure 20. 
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Residual analysis of mouse bone marrow-derived dendritic cells identifies sets of co-

expressed genes.  

We also explored stimulation-driven correlation patterns. Principal component analysis (Figure 

6A) of the model residuals demonstrates a clear time trend associated with PC1, as cells 

increase co-expression of interferon-activated genes. After removing the marginal stimulation 

and adjusting for the CDR, we observe correlation between chemokines CCL5, TNF receptor 

CD40, and interferon-inducible (IFIT) genes (Figure 6B). A principal finding of the original 

publication was the identification of a subset of cells that exhibited an early temporal response 

to LPS stimulation. Recapitulating the original results here, when we examine the PCA of the 

residuals using the genes in the core antiviral module, we can identify the “early marcher” cells 

at the 1h time-point (Supplementary Figure 21).  The co-expression plot for other stimulations 

can be found in the supplementary material (Supplementary Figures 22and 23).  

 

 

Conclusion 

We have presented MAST, a flexible statistical framework for the analysis of scRNA-seq data. 

MASTis suitable for supervised analyses about differential expression of genes and gene-

modules, as well as unsupervised analyses of model residuals, to generatehypotheses 

regarding co-expression of genes. MAST accounts for the bimodality of single-cell data by 

jointly modeling rates of expression (discrete) and positive mean expression (continuous) values. 

Information from the discrete and continuous parts is combined to perform inference about 

changes in expression levels using gene or gene-set based statistics. Because our approach 

uses a generalized linear framework, it can be used to jointly estimate nuisance variation from 

biological and technical sources, as well as biological effects of interest. In particular, we have 

shown that it is important to control for the proportion of genes detected in each cell, which we 

refer to as the cellular detection rate (CDR), as this factor can single-handedly explain13% of 
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the variability in the 90% percentile gene. Adjusting for CDR at least partially controls for 

differences in abundance due to cell size and other extrinsic biological and technical effects. 

Using several scRNA-seq datasets, we showed that our approach provides a statistically 

rigorous improvement to methods proposed by other groups in this context[5].Although MAST 

has greatest efficiency when the continuous (log)-expression is Normally distributed 

transformations (such as the Box-Cox) could also be applied if the non-zero continuous 

measurements are skewed.  

 

As discussed by Padovan-Merhar et al[11], care must be taken when interpreting experiments 

where the system shows global changes in CDR across treatment groups. The question is 

essentially ontological: is the CDR a mediator of the treatment effect (is it caused by the 

treatment and intermediate to expression of the gene of interest), or does it confound the 

treatment effect (does it happen to co-occur with treatment).  Regardless, the CDR-adjusted 

treatment estimates are interpreted as the change in expression due to treatment, if CDR were 

held constant between the two conditions. 

 

Two other alternative uses of the CDR are of note.  It is also possible to use CDR as a precision 

variable (an uncorrelated secondary cause)by centering the CDR within each treatment groups, 

which makes the CDR measurement orthogonal to treatment.  This would implicitly assume that 

the observed changes are treatment induced, while still modeling the heterogeneity in cell 

volume within each treatment group. An alternative approach would be to estimate the CDR 

coefficient using a set of control genes assumed to be treatment invariant, such as 

housekeeping or ERCC spike-ins[25, 26] and including it as an offset to the linear predictors in 

the regression. An analogous approach is undertaken by Buettner et. al.[26]. As noted by Hicks 

et. al.[27],  the optimal approach to handle confounding between technical and biological effects 

on the CDR is to design experiments with biological replicates across multiple batches. Finally, 
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we note that while the methodology presented here was developed using scRNA-seq data sets, 

it appears applicable to other single-cell gene expression platforms where bimodal, conditionally 

Normal expression patterns are seensuch as single cell RNA seq withunique molecular 

identifiers. 

 

 

Methods 

 

Data Sets 

Data for the MAIT study were derived from a single donor who provided written informed 

consent for immune response exploratory analyses. The study was approved by the 

relevant institutional review boards. 

 

MAIT cell isolation and stimulation 

Cryopreserved PBMC were thawed and stained with Aqua Live/Dead Fixable Dead Cell Stain 

and the following antibodies: CD3, CD8, CD4, CD161, Vα7.2, CD56 and CD16. CD8+ MAIT 

cells were sorted as live CD3+CD8+ CD4-CD161hiVα7.2+ cells and purity was confirmed by post-

sort FACS analysis. Sorted MAIT cells were divided into aliquots and immediately processed on 

a C1 Fluidigm machine or treated with a combination of IL-12 (eBioscience), IL-15 (eBioscience), 

and IL-18 (MBL) at 100ng/mL for 24 hours followed by C1 processing.  

 

 

C1 processing, Sequencing, and Alignment 

After flow sorting, single cells were captured on the FluidigmTM C1 Single-Cell Auto Prep 

System (C1), lysed on chip and subjected to reverse transcription and cDNA amplification using 
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the SMARTer® Ultra™ Low Input RNA Kit for C1 System (Clontech).  Sequencing libraries were 

prepared using the Nextera XT DNA Library Preparation Kit (Illumina) according to C1 protocols 

(Fluidigm).  Barcoded libraries were pooled and quantified using a Qubit® Fluorometer (Life 

Technologies). Single-read sequencing of the pooled libraries was carried out either on a 

HiScanSQ or a HiSeq2500 sequencer (Illumina) with 100-base reads, using TruSeq v3 Cluster 

and SBS kits (Illumina) with a target depth of >2.5M reads. Sequences were aligned to the 

UCSC Human genome assembly version 19 and gene expression levels quantified using 

RSEM[28] and TPM values were loaded into R[29] for analyses. See supplement for more 

details on data processing procedures. 

 

 

Time-series stimulation of mouse bone-marrow derived dendritic cells (mDC) 

Processed RNA-seq data (transcripts-per-million, TPM) were downloaded from GEO under 

accession number GSE41265. Alignment, pre-processing and filtering steps have been 

previously described[5]. Low quality cells were filtered as described in Shalek et al[5]. 

 

Single Cell RNA Seq Hurdle model 

We model the log2(TPM+1) expression matrix as a two part generalized regression model. The 

cell expression rate given a design is modeled using logistic regression and the expression level 

is modeled as conditionally Gaussian given that they are expressed.   

 

Given normalized, possibly thresholded (see supplementary material), scRNA-seq expression 

𝑌𝑌 = �𝑦𝑦𝑖𝑖𝑖𝑖 �, the rate of expression and the level of expression for the expressed cells are modeled 

conditionally independent for each gene g.  Define the indicator Z = �𝑧𝑧𝑖𝑖𝑖𝑖 � indicating whether 

gene g is expressed in cell i, i.e. 𝑧𝑧𝑖𝑖𝑖𝑖 = 0 if 𝑦𝑦𝑖𝑖𝑖𝑖 = 0 and 𝑧𝑧𝑖𝑖𝑖𝑖 = 1 if 𝑦𝑦𝑖𝑖𝑖𝑖 > 0.  We fit logistic 



 19 

regression models for the discrete variable 𝑍𝑍 and Gaussian linear model for the continuous 

variable (𝑌𝑌 | 𝑍𝑍 = 1) independently, as follows, 

 

𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖𝑔𝑔 �𝑃𝑃𝑃𝑃�𝑍𝑍𝑖𝑖𝑖𝑖 = 1�� = Xiβg
D  

Pr�𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑦𝑦�𝑍𝑍𝑖𝑖𝑖𝑖 =  1� =  N�Xiβg
C ,𝜎𝜎𝑖𝑖2� 

 

The regression coefficients of the discrete component are regularized using a Bayesian 

approach as implemented in the bayesglm function of the arm R package, which uses weakly 

informative priors[30] to provide sensible estimates under linear separation (See supplementary 

material for details). We also perform regularization of the continuous model variance parameter, 

as described below, which helps increases robustness of gene-level differential expression 

analysis when a gene is only expressed in a few cells.  

 

We define the cellular detection rate (CDR) as the proportion of genes detected in each cell. 

The CDR for cell 𝑖𝑖 is: 

𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖 = 1/𝑁𝑁� 𝑧𝑧𝑖𝑖𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

An advantage of our approach is that it is straightforward to account for CDR variability by 

adding the variable as a covariate in the discrete and continuous models (column of the design 

matrix, 𝑋𝑋, defined above). In the context of our hurdle model, inclusion the CDR covariate can 

be thought of as the discrete analog of global normalization, and as we show in the examples, 

this normalization yields more interpretable results and helps decrease background correlation 

between genes, which is desirable for detecting genuine gene co-expression.  

 

Shrinkage of the continuous variance 
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As the number of expressed cells varies from gene to gene, so does the amount of information 

available to estimate the residual variance of the gene.  On the other hand, many genes can be 

expected to have similar variances. To accommodate this feature of the assay, we shrink the 

gene-specific variances estimates to a global estimate of the variance using an empirical Bayes 

method.  Let 𝜏𝜏𝑖𝑖2 be the precision (1/variance) for 𝑌𝑌𝑖𝑖 |𝑍𝑍𝑖𝑖 = 1 in gene g.  We suppose  

𝜏𝜏𝑖𝑖2 ∼ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝛼𝛼,𝛽𝛽), find the joint likelihood (across genes) and integrate out the gene-specific 

inverse variances. Then maximum likelihood is used to estimate 𝛼𝛼 and 𝛽𝛽.  Due to conjugacy, 

these parameters are interpretable providing 2𝛼𝛼 pseudo-observations with precision 𝛽𝛽/𝛼𝛼.  This 

leads to a simple procedure where the shrunken gene-specific precision is a convex 

combination of its MLE and the common precision. This approach accounts for the fact that the 

number of cells expressing a gene varies from gene to gene. Genes with fewer expressed cells 

end up with proportionally stronger shrinkage, as the ratio of pseudo observations to actual 

observations is greater. Further details are available in the supplement. 

 

Testing for differential expression 

Because 𝑍𝑍𝑖𝑖 and 𝑌𝑌𝑖𝑖  are defined conditionally independent for each gene, tests with asymptotic 

𝜒𝜒2null distributions, such as the likelihood ratio or Wald tests can be summed and remain 

asymptotically 𝜒𝜒2, with the degrees of freedom of the component tests added. For the 

continuous part, we use the shrunken variance estimates derived through our empirical Bayes 

approach described above. The test results across genes can be combined and adjusted for 

multiplicity using the false discovery rate (FDR) adjustment[31]. In this paper, we declare a gene 

differentially expressed if the FDR adjusted p-value is less than 0.01 and the estimated fold-

change is greater than 1.5 (on log2 scale). 

 

Gene Set Enrichment Analysis (GSEA) 
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Our competitive GSEA compares the average model coefficient in the test set (gene set of 

interest) to the average model coefficient in the null set (everything else) with a Z-test.  Suppose 

the genes are sorted so that the first 𝐺𝐺0 genes are in the null set, and the last 𝐺𝐺 − 𝐺𝐺0 genes are 

in the test set.  Then, for example, to test the continuous coefficients in the gene set, the sample 

means of the coefficients in the test and null sets are calculated, that is, calculate 𝜃𝜃�  =

1/(𝐺𝐺 − 𝐺𝐺0)∑ �̂�𝛽𝑖𝑖𝐺𝐺
𝑖𝑖=𝐺𝐺0+1  and 𝜃𝜃�0   = 1/𝐺𝐺0 ∑ �̂�𝛽𝑖𝑖

𝐺𝐺0
𝑖𝑖=1 .  The sampling variance of 𝜃𝜃�0, in principle, is 

equal to 1/𝐺𝐺0�∑ 𝑉𝑉𝐺𝐺𝑃𝑃(�̂�𝛽𝑖𝑖)𝑛𝑛
𝑖𝑖=1 + 2∑ 𝐶𝐶𝑙𝑙𝐶𝐶(�̂�𝛽𝑖𝑖 , �̂�𝛽ℎ)1≤𝑖𝑖<ℎ<𝐺𝐺0 �, and similarly for  𝜃𝜃�. 

Given this sampling variance, a Z test can be formed by comparing 𝑍𝑍 = 𝜃𝜃�−𝜃𝜃�0

�𝑉𝑉𝐺𝐺𝑃𝑃� �𝜃𝜃��+𝑉𝑉𝐺𝐺𝑃𝑃� �𝜃𝜃�0�
. 

 

We estimate 𝑉𝑉𝐺𝐺𝑃𝑃(�̂�𝛽𝑖𝑖  ) and 𝐶𝐶𝑙𝑙𝐶𝐶( �̂�𝛽𝑖𝑖 , �̂�𝛽ℎ  ) via bootstrap, to avoid relying on asymptotic 

approximations. In practice, we find only a few (<100) bootstrap replicates are necessary to 

provide stable variance-covariance estimates, however even this modest requirement can be 

relaxed for exploratory analysis by assuming independence across genes and using model-

based (asymptotic) estimates.   

 

Z scores are formed and calculated equivalently for the logistic regression coefficients. GSEA 

tests are done separately on the two components of the hurdle model and the results from the 

two components are combined using the Stouffer’s method[32], which favors consensus in the 

two components[33] (see supplement for details).  The approach is similar to that used by 

CAMERA[16] for bulk experiments in its accounting for inter-gene correlation that is known to 

inflate the false significance (type-I error) in permutation-based GSEA protocols[16], although it 

differs in that it uses the sampling variance of each model coefficient to estimate the variance of 

the average coefficient, whereas CAMERA uses the empirical variance of the model coefficients. 
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In our analyses we used the Emory blood transcriptional modules[22] as well as mouse gene 

ontology annotations available from the Mouse Genome Informatics web site[34]. 

 

GO Enrichment Analysis 

Testing for enriched Gene Ontology terms based on list of genes was performed with the 

GOrilla online tool using the approach of comparing an unranked target list against a 

background list[35]. 

 

Residual Analysis 

The hurdle model, in general, provides two residuals: one for the discrete component and one 

for the continuous component. Standardized deviance residuals are calculated for the discrete 

and continuous component separately, and then we combine the residuals by averaging them.  

If a cell is unexpressed, then its residual is missing and it is omitted from the average (details in 

Supplementary methods). 

 

Module Scores 

In order to assess the degree to which each cell exhibits enrichment for each gene module, we 

use quantities available through our model to define module “scores”, which are defined as the 

observed expression corrected for CDR effect, analogous to those defined by Shalek et al[5]. 

The score 𝑠𝑠𝑖𝑖𝑖𝑖  for cell 𝑖𝑖 and gene 𝑖𝑖 is defined as the observed expression corrected for the CDR 

effect: 𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑦𝑦�𝑖𝑖𝑖𝑖  where 𝑦𝑦�𝑖𝑖𝑖𝑖  is the predicted effect from the fitted model that excludes thre 

treatment effects of interest. This can be interpreted as correcting the observed expression of 

gene 𝑖𝑖 in cell 𝑖𝑖 by subtracting the conditional expectation of nuisance effects. In our two part 

model,𝑦𝑦�𝑖𝑖𝑖𝑖 =  �̂�𝑧𝑖𝑖𝑖𝑖 𝑦𝑦�𝑖𝑖𝑖𝑖  where �̂�𝑧𝑖𝑖𝑖𝑖 and 𝑦𝑦�𝑖𝑖𝑖𝑖  are the predicted values from the discrete and continuous 

components of our hurdle model.  



 23 

A gene module score for cell I is the average of the scores for the genes contained in the 

module, i.e. ∑ 𝑠𝑠𝑖𝑖𝑖𝑖 /|𝐺𝐺𝑙𝑙𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚|{𝑖𝑖∈𝐺𝐺𝑙𝑙𝑚𝑚𝑚𝑚𝑙𝑙𝑚𝑚 }  

 

Availability of Supporting Data 

MAST is available as an R package (http://www.github.com/RGLab/MAST, doi: 

10.5281/zenodo.18539), released under the GPL license. All data and results presented in this 

paper – including code to reproduce the results – are available at: 

(http://github.com/RGLab/MASTdata/archive/v1.0.1.tar.gz, doi: 10.5281/zenodo.19041). Raw 

data files have been submitted to NCBI’s sequence read archive under project accession 

SRP059458.  

Ethics 

All experimental methods comply with the Helsinki Declaration. 
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Figure Legends 

Figure 1. The fraction of genes expressed, or cellular detection rate (CDR), is correlated with 

the first two principal components of variation in MAIT and DC data sets. 

 

Figure 2.  Single-cell expression (log2-TPM) of the top 100 genes identified as differentially 

expressed between cytokine (IL18, IL15, IL12)stimulated(purple) and non-stimulated (pink) 

MAIT cells using MAST (A).  Partial residuals for up- and down- regulated genes are 
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accumulated to yield an activation score (B), and this score suggests that the stimulated cells 

have a more heterogeneous response to stimulation than do the non-stimulated cells. 

 

Figure 3. Module scores for individual cells for the top 9 enriched modules (A) and decomposed 

Z-scores (B) for single-cell gene set enrichment analysis in MAIT data set, using the blood 

transcription modules (BTM) database. The distribution of module scores suggests 

heterogeneity among individual cells with respect to different biological processes. Enrichment 

of modules in stimulated and non-stimulated cells is due to a combination of differences in the 

discrete (proportion) and continuous (mean conditional expression) of genes in modules. The 

combined Z-score reflects the enrichment due to differences in the continuous and discrete 

components. 

 

Figure 4. Gene-gene correlation (Pearson’s rho) of model residuals in non-stimulated (A) and 

stimulated (B) cells, and principal components analysis biplot of model residuals (C) on both 

populations using the top 50 marginally differentially expressed genes. As marginal changes in 

the genes attributable to stimulation and CDR have been removed, clustering of subpopulations 

in (C) indicates co-expression of the indicated genes on a cellular basis. 

 

Figure 5. Module scores (A) and decomposed Z-scores (B) for single-cell gene set enrichment 

analysis for LPS stimulated cells, mDC data set, using the mouse GO biological process 

database. The change in single-cell module scores over time for the nine most significantly 

enriched modules in response to LPS stimulation are shown in A. The core antiviral, peaked 

inflammatory and sustained inflammatory modules are among the top enriched modules, 

consistent with the original publication. Additionally we identify GO modules cellular response to 

interferon-beta and response to virus, which behave analogously to the core antiviral and 

sustained inflammatory modules. No GO analog for the peaked inflammatory module was 
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detected. The majority of modules detected exhibit enrichment relative to the 1h time point (thus 

increasing with time). The “early marcher” cells identified in the original publication are 

highlighted here with triangles. We show the top 50 most significant modules (B). The combined 

Z-score summarizes the changes in the discrete and continuous components of expression. 

 

Figure 6. Principal components analysis biplot of model residuals (A) and Gene-gene 

correlation (Pearson’s R) of model residuals (B) by time point for LPS cells, mDC experiment 

using 20 genes with largest log-fold changes, given significant (FDR q <.01) marginal changes 

in expression. PC1 is correlated with change over time. The two “early marcher” cells are 

highlighted by an asterisk at the 1h time-point. Correlation structure in the residuals is 

increasingly evident over time and can be clearly observed at the 6h time-point compared to the 

earlier time-points. 

 

 


